Notre façon de noter un entier M à l’aide des dix chiffres correspond à décomposer M en fonction de puissances de 10. Par exemple, on écrit 216 = 6 + 1 × 10 + 2 × 102. Ceci paraît couler de source car 216 nous est connu par son écriture : la numération de position, que nous devons aux mathématiciens indiens et arabes, utilise cette décomposition pour noter les nombres. En réalité, ces chiffres 6, 1 et 2 se retrouvent par un algorithme très simple : 6 est le reste de la division par 10 de 216 (plus précisément, 216 = 6 + 21 × 10). De même, 1 est le reste de la division euclidienne de 21 par 10 (puisque 21 = 1 + 2 × 10). Il reste enfin 2, qui est strictement inférieur à 10 ; le processus s’arrête.
De l’art de noter les nombres
L’algorithme peut se faire en remplaçant 10 par n’importe quel autre entier p supérieur ou égal à 2. Prenons par exemple p = 5 et ...
Lire la suite